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 Abstract  

 Schwarzschild solution has been used to calculate light 

bending angle in a gravitational field by performing an 

elliptic integration. However, because Schwarzschild 

solution includes a non-linear distortion of the radial 

axis, it is very difficult to calculate the bending angle. 

Herein a new method to calculate this quantity was 

developed based on the assumptions that both of the speed 

and the direction of propagation of light change in a 

gravitational field. The validity of the new method is 

proved by showing that the bending angle produced by the 

non-linear distortion of the radial axis in Schwarzschild 

solution corresponds to that obtained from the assumptions 

of the new method. Consequently, the new method is 

identical to Schwarzschild solution, but simple, easy and 

exact.  

 

1. Introduction  

In this study, a new method for calculating the bending 

angle of light in a gravitational field is proposed. The 

new method is based on the assumptions that the radial 

axis is not distorted by the field but that light 

propagates changing its speed and direction in a 

gravitational field. In other words, the non-linear 

distortion of the radial axis in Schwarzschild solution 

corresponds to a variation of the bending angle of light, 

which is calculated using the new method. 
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2. Relation between Schwarzschild solution 
and the new method  
 Consider a spherically symmetric coordinate system with a 

point mass M at the center. Let R′ be the radial coordinate 

in this system. Furthermore, the following quantities are 

defined.  

   C : Speed of light in a static system   

   C′ : Speed of light in a gravitational field   

  θ : Rotation angle of light around the center   

  ω : Rotation angle of the direction of light propagation 

d : Infinitesimal change i.e. differential 

G : Gravitational constant 

  We also define the parameter α = 2GM/C2.   

Schwarzschild solution is as the following. 

(1) -dS2  =  C2(1 −  α/R′)dt’2 –  dR′2/(1 − α/R′) – R′2(dθ2  +

 sin2θdΦ2)  

 

Where α =  2GM/C2, C′2 = C2(1 −  α/R′) and dΦ = 0   

With the parameters defined above, equation (1) can be 

rewritten as  

(2) −dS2 + (α/R′)dR′2/(1 − α/R′) = C′2dt′2– dR′2 − R′2dθ2   

The right-hand side of equation (2) 

vanishes, as shown in Fig. 1. 

 We next define the quantity (dω/dθ) by 

the following equation: 

(3) (dω/dθ) = (α/R′)/(1 − α/R′)   

 In section 4, we also derive  

equation (3) from the assumptions  

of the new method. 

Using equation (3), equation (2) 

can be rewritten as  

(4)  −dS2 + (dω/dθ)dR′2 = (1 −/R′)dt′2 − dR′2 − R′2dθ2 = 0   

Equation (4) demonstrates that the quantity (dω/dθ) 

corresponds to the non-linear distortion of the radial axis 

Fig. 1 



R′ in the original definition of dS2. Note that the right- 

hand side of the equation (4) includes no distortion of the 

radial axis R′.   

 

 

3. How the speed of light is changed in a 

gravitational field 

It is assumed that an arbitrary location in gravitational 

fields belongs to an inertia system having time axis t′ 

with speed of light C and radial axis R′ moving with speed 

U(R′) relative to a static system. The static system is 

taken to have time axis t with speed of light C and radial 

axis R. Then, since the proper distance dS2  is preserved 

under a coordinate transformation from the static system 

to the inertia system, we have the following formula.  

Here, C′ is the speed of light at an arbitrary position 

in the inertial system (i.e. a gravitational field), C is 

the speed of light in the static system (i.e. a non-

gravitational field) and i is the imaginary unit (i2 = −1). 

     dS2 = (iCdt)2 = dS′2 = (iCdt′)2 + (U(R)dt′)2   

               dθ =  0 ,    dΦ =  0  

 Note that the inertia system to which the arbitrary 

location belongs differs at different locations and that  

no gravitational field is present in the static system. 

Since the distance through which light propagates is 

independent of the inertia system, we have the following 

equation. 

C′dt′ = Cdt.  

This yields the following equation.  

 (6)  C′2 = C2 − U2 ,    U = U(R)   

 

When mass m(≪ M) with speed v enters the gravitational 

field of a mass M from infinity, we have the following 



equations:  

    (iCdt′)2 + (Udt′)2 + (vdt′)2 = (dS′)2 = (iCdt′)2 + (V′dt′)2    

    (Udt′)2 + (vdt′)2 = (V′dt′)2   

    V’2 = v2 + U2  

    mV′2
/2 = mv2/2 + mU2/2   

    d(mv2/2)/dR = 0  

    d(mV′2/2)/dR = d(mU2/2)/dR = F = mg = mGM/R2    

    dU2/dR =  2GM/R2  

    U2 =  2GM/R   

where g =  GM/R2 is the gravitational acceleration,v is the 

speed of mass m  at infinity, V′  is its speed in the 

gravitational field and F is the gravitational force acting 

on mass m.   

 

Using these definitions, we can rewrite equation (6) as. 

 (7)  C′2 = C2 − 2GM/R    

 

 Note that when C′2 = 0, we have C2 − 2GM/Rs = 0, where Rs =

2GM/C2 is Schwarzschild radius  

 

4. How does the propagation direction of 
light change in a gravitational field ?   
 In Fig.2, we assume a beam of light pass a mass M at a 

distance R traverse to radial direction. Light then 

continues past the direction defined 

by the angle θ at a distance R′ from 

mass M with the direction of propagation 

given by the angle ω.  

 We assume that the angular rate of 

change dω/dt′ of the direction of 

propagation of light in the gravitational 

field varies according to  

 (8)   C′(dω/dt′) = (dU2/dR)cosδ   

                 = C′(dω/dθ)(dθ/dt′)   

where δ = θ − ω.  

Fig.2  



 

 As illustrated in Fig.3, we define 

   dθ/dt′ = C′cosδ/R′  

Using this equation, we can rewrite 

equation (8) as follows: 

   dω/dt′ = (dω/dθ)(C′cosδ/R′) = 2GMcosδ/C′R′2  

   dω/dθ = 2GM/C′2R’  

 Using equation (7), the equation (3)  

of section 2 can be rewritten as  

(9)   dω/dθ =  (2GM/C2R′)/(1 − 2GM/C2R′)   

             = (Rs/R′)/(1 − Rs/R′)  

where Rs = 2GM/C2.  

 

5. Specific examples of the bending angle of 
light in a gravitational field 
5.1 Let us consider the case defined by Rs ≪ R = R′cosθ, α/R′ ≪

1 and ω ≪ θ . As shown in Fig.4, 

the following equations 

are formed.  

 dω/dθ = (Rs/R)cosθ   

    ω𝑝 = ∫ dω = ∫ ∫(Rs/R)cosθ
𝜋/2

−𝜋/2
dθ   

       = (Rs/R)(sin (π/2) − sin (−π/2))   

       = 2Rs/R′ = 4GM/C2R  

 The bending angle ω𝑝 of light passing 

the periphery of the sun may be  

calculated using this equation. 

 

5.2 Next, consider the case defined by R = γRs, 2 < γ, δ = θ −

ω > 0 and dδ/dθ > 0. This corresponds the following 

equations(Fig.5). 

  dR′ = C′dt′sinδ  

 

Fig.3  

Fig.3 

Fig.4 



 dθ/dt′ = C′cosδ/R′    

  dR′/dt′ = (dR′/dθ)(dθ/dt′) = C′sinδ    

  (dR′/dθ)(C′cosδ/R′) = C′sinδ   

  d(logR′)/dθ = sinδ/cosδ = −d(log(cosδ))/dδ   

 logR′ = −log(cosδ) + log A,   

            A: Integration constant 

  R′cosδ = R′cos(θ − ω) = A, θ = ω   

 R′ = R = A  

  (10)  R′cosδ = R   

 With these definitions, we can rewrite equation (9) as 

  (11)  dω/dθ = Rs(cosδ/R)/(1 − Rs(cosδ/R)),  

where again  Rs = 2GM/C2. Equation (11) can also be written 

in the form  

  (12)  dδ/dθ = (γ − 2cosδ)/(γ − cosδ) > 0,   

which describes a parabolic path.  

 As shown by the thick line in Fig.6, 

angle δ increases as θ increases. 

 The fold point of the thick line moves 

upward or downward on the line of θ = π/2 

as γ increases or decreases. 

 

5.3 For the case defined by 1 < γ < 2, R = γRs, −δ = δ′ = ω − θ >

0, as shown in Fig. 7, we can write 

the following formulas: 

  (dR′/dθ)(C′cosδ′/R′) = −C′sinδ,   

  d(logR′)/dθ = −sinδ′/cosδ′ = d(log(cosδ′))/dδ′,  

  logR′ = log(cosδ′)  +  logA,  

  where logA is a constant of integration, 

  R′ = Acosδ′,  θ = ω, R′ = R = A and  

  R′ = Rcos(ω − θ) = γRs(cosδ′).  

 With these results, formula (6) can 

be rewritten as 

(8) dω/dθ = (2GM/cos(ω − θ)C2R)/(1 − (2GM/

cos(ω − θ)C2R)) and 

  (9)  dδ′/dθ = (γcosδ′ − 2)/(γcosδ′ − 1)  >  0   

Fig.5 

Fig.6  

 Fig.7 



 which describes a spiral path.  

 

5.4 In the case of γ = 1 and R = Rs = 2GM/C2, the following 

formulas are formed. 

      C′2 = C2 − 2GM/Rs = C′2 − C2 = 0 

  Therefore, the light could not exist in the case of γ <

1, because C′2 cannot be minus.   

 

6. Conclusions  
  In the new method described, it is assumed that light 

does not propagate in straight lines in a gravitational 

field. Instead, we assume that it propagates with changing 

speed C′ defined by C′2 = C2 − 2GM/R, and that it bends in the 

direction corresponding to the acceleration defined by 

dU2/dR  (U2 = 2GM/R). Because the bending angle derived from 

these assumptions corresponds to the non-linear distortion 

of the radial axis in the Schwarzschild solution, the new 

method is the same as the Schwarzschild solution. However 

the new method is simple, easy to calculate and yields 

exactly the same bending angle as that given by the 

Schwarzschild solution. 
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